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Abstract

Recent research in factory scheduling has demonstrated the benefits of building schedules by
first optimizing the sequencing of bottleneck machines, namely machines whose utilizations are

expected to be partict' rly high. Within this approach, two scheduling perspectives are

generally adopted: a resource-centered perspective is used to help maximize the utilization of

bottleneck machines and a job-ceatered perspective is later used to compactly complete each job
schedule (i.e. reduce work in-process inventory). Because new secondary bottlenecks may arise

during the construction of the schedule, recent scheduling systems have been designed with an
ability to switch back and forth between their resource-centered scheduling perspective and their

job-centered scheduling perspective. This ability to dynamically revise the current scheduling
strategy has been termed opportunistic scheduling. However, because these schedulers require

scheduling large resource subproblems or large job subproblems before revising their scheduling

strategy, we refer to them as macro-opportunistic schedulers. Instead, this paper describes
MICRO-BOSS, a so-called micro-opportunistic scheduler that can revise its scheduling strategy

each time an operation is scheduled. Experimental results suggest that the extra flexibility of a

micro-opportunistic approach to scheduling often translates into important reductions in schedule

costs.

Keywords: Production Scheduling, Bottleneck Analysis, Heuristic Search, Constraint

Satisfaction Problems, Combinatorial Optimization, Probabilistic Reasoning, Intelligent
Decision Support Systems.
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1 Introduction
In an economy where competition continuously intensifies, the need for cost-efficient production
scheduling is becoming more critical every day. Current production scheduling techniques have
largely failed to provide such cost-efficient solutions because of their inability to account for the
diversity of constraints, costs, and preferences typically encountered in the manufacturing

domain. Numerous techniques have been developed that focus on meeting due dates without
paying attention to inventory costs, or attempt to maximize machine utilization without taking
care of meeting due dates. This paper presents an approach to scheduling that can explicitly
account for a variety of costs, including tardiness costs, in-process inventory costs, and finished-
goods inventory costs. These costs are used to continuously update demand profiles that reflect

contention between unscheduled jobs for the allocation of machines over time. By closely
monitoring the evolution of bottlenecks during the construction of the schedule, and
continuously redirecting the scheduling effort toward the optimization of the bottlenecks that
currently appear most critical, this new scheduling approach has yielded significant reductions in

schedule costs.

The job shop scheduling problem requires scheduling a set of jobs on a finite set of resources
(e.g. machines, human operators, etc.). Each job is a request for the scheduling of a set of
operations according to a process routing that specifies a partial ordering among these
operations, along with their resource requirements. Operations are atomic: once started they
cannot be interrupted. This paper is concerned with the design of a factory scheduler that builds a

detailed schedule for the jobs to be produced over a planning horizon that ranges from a couple
of days to a couple of weeks. The jobs to be scheduled are provided by a master-scheduling
module [20] along with due dates, earliest acceptable release dates, marginal tardiness costs,
marginal in-process inventory costs (e.g. interests on raw material costs, marginal direct holding
costs, interests on processing costs, etc.), and marginal finished-goods inventory costs.

Job shop schediuling belongs to the class of NP-complete problems [7]. At the exception of a

couple of one-, two-, and three- machine job shop scheduling problems, for which there exist
efficient algorithms [17], all attempts to guarantee an optimal solution have failed. Instead job
shop scheduling problems have traditionally been solved using priority dispatch rules [2, 16, 6].

These are local decision rules of the greedy type that build schedules via a forward simulation of
the shop. Because these rules lack a global view of the shop, they usually build up large

amounts of inventory in front of bottleneck machines.

More recently, with the advent of more powerful computers, a couple of more sophisticated

scheduling techniques have been developed [8, 12, 1, 13, 111. The first and by far most
publicized of these techniques is the one developed by Goldratt and his colleagues within the
context of the OPT factory scheduling system [8, 9, 5]. Among other things, this system
emphasized the need to distinguish between bottleneck and non-bottleneck machines [9, 5]. In
OPT, bottlenecks drive the entire schedule as they determine the throughput of the plant. More
specifically, a module called SERVE produces an initial infinite capacity schedule by working
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backwards from the job due dates. This initial schedule helps detect potential bottlenecks. The
OPT module itself is then called upon to generate a forward finite capacity schedule that
optimizes the utilization of these bottlenecks. The resulting bottleneck schedules are passed back
to the SERVE module, which schedules the non-bottleneck operations while trying to minimize
inventory. The distinction between bottleneck and non-bottleneck machines was pushed one step
further in the OPIS system [21, 13], as it was recognized that new bottlenecks can appear during
the construction of the schedule. The OPIS scheduler combines two scheduling perspectives: a
resource-centered perspective for scheduling bottleneck resources, and a job-centered
perspective to schedule non-bottleneck operations on a job by job basis [4]. Rather than relying
on its initial bottleneck analysis, OPIS typically repeats this analysis each time a resource or a
job has been scheduled. This ability to detect the emergence of new bottlenecks during the
construction of the schedule and revise the current scheduling strategy has been termed
opportunistic scheduling [13]. Nevertheless, the opportunism in this approach remains limited in
the sense that it typically requires scheduling an entire bottleneck (or at least a large chunk of it)
before being able to switch to another one. For this reason, such scheduling techniques should in
fact be called macro-opportunistic.

In reality, variations in the job mix often cause bottlenecks to wander over time. Bottlenecks
also tend to shift or disappear before being entirely scheduled. A scheduler that can only
schedule large resource/job subproblems will not be able to take such variations into account. It
will overconstrain its set of alternatives before having worked on the subproblems that will most
critically determine the quality of the entire schedule. This in turn will often result in poorer
solutions. A more flexible approach would allow to quit scheduling a resource as soon as
another resource is identified as being more constraining. In fact, in the presence of multiple
bottlenecks, one can imagine a technique that constantly shifts attention from one bottleneck to
another rather than focusing on the optimization of a single bottleneck at the expense of others.
This paper presents a more flexible approach to scheduling, or a micro-opportunistic approach,
in which the evolution of bottlenecks is continuously monitored during the construction of the
schedule, and the problem solving effort constantly redirected towards the most serious
bottleneck. In its simplest form, this micro-opportunistic approach results in an
operation-centered view of scheduling, in which each operation is considered an independent
decision point and can be scheduled without requiring that other operations using the same
resource or belonging to the same job be scheduled at the same time1 .

Section 2 of this paper gives a formal definition of the job shop scheduling problem studied in
this paper. Section 3 describes a micro-opportunistic factory scheduling system called
MICRO-BOSS (MICRO-BOttleneck Scheduling System), concentrating on the heuristics to

'An alternative approach in which resources can be resequenced to adjust for resource schedules built further
down the road is described in [1, 3]. This approach has been very successful at minimizing makespan. Attempts to
generalize the procedure to account for due dates seem to have been less successful so far [19]. It should also be
pointed out that the idea of continuously reoptimizing the current partial schedule is not incompatible with the
micro-opportunistic approach.
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identify critical operations and promising reservations for these operations. Section 4 describes
an empirical study that compares MICRO-BOSS against several other scheduling techniques.
Conclusions are presented in section 5.



2 The Job Shop Model
Formally, the problem requires scheduling a set of jobs J=fJl .... n} on a set of physical resources

RES={Ri,...,Rm}. Each job j, consists of a set of operations O= 1 to be scheduled

according to a process routing that specifies a partial ordering among these operations (e.g. i

BEFORE 0).

Additionally a job j, has an earliest acceptable release date, erdl, a due-date, dd l, and a latest
acceptable completion date, lcd1. lcd t > dd l > erdl. All jobs need to be scheduled between their
earliest acceptable release date and latest acceptable completion date. The earliest acceptable
release date may correspond to the earliest possible arrival date of raw materials or to a rough
release date provided by a master scheduling module. It is assumed that the actual release date
will be determined by the schedule to be constructed. The latest acceptable completion date may
correspond to a date after which the customer will refuse delivery. If such a date does not
actually exist, it can always be chosen far enough in the future so that it is no longer a constraint.

Each operation 0 has a fixed duration, du', and a start time, st (to be determined), whose domain

of possible values is delimited by an earliest start time, estI, and a latest start time, 1st' (initially
derived from the job's earliest acceptable release date erd and latest acceptable completion date

lcdl). In order to be successfully executed, each operation 0 requires a resource R, (e.g. R,=R 1,
a milling machine).

COSTS:

Each job j, has:

o a marginal tardiness cost, tard: the cost incurred for each unit of time that the job is tardy
(i.e. finishes past its due date). Marginal tardiness costs generally include tardiness penalties,
interests on delayed profits, loss of customer goodwill, etc 2. The total tardiness cost of job Ji, in
a given schedule, is:

TARD t = tardi x Max(O, C1- ddt) (1)

where C ,I +du, is the completion date of job j, in that schedule, assuming that O,, is the last
operation in job j,.

o marginal in-process and finished-goods inventory costs: In our model, each operation O1 can

incrementally introduce its own non-negative marginal inventory cost, inv. Typically the first
operation in a job introduces marginal inventory costs that correspond to interests o i the costs of
raw materials, interests on processing costs (for that first operation), and marginal holding costs.

2In this model, inventory costs incurred past the due date are not accounted for in the tardiness costs. Instead they
are accounted for in the inventory costs described below.
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Downstream operations 3 introduce additional marginal inventory costs such as interests on
processing costs or interests on the costs of additional raw materials required by these operations.

The total inventory cost for a job JI, in a given schedule, is:
I

1NVI inv' x [Max(Cldl) - st (2)
i=1I

The total cost of a schedule is obtained by summing the cost of each job schedule:

-n

Schedule Cost (TARDI+INV)
I 1=1

The goal of the scheduler is to produce a feasible schedule that reduces this total cost as much as

possible.

3An operation 0 k is said to be downstream (upstream) of another operation Ok within the same job if 0 k is a

direct or indirect successor (predecessor) of 0 kin that job, as defined by its process routing.
I
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EXAMPLE:

Figure 1 depicts a small job shop problem with 4 jobs. Each square box represents an operation.

Each box is labeled with the name of the operation that it represents (e.g. O,), the duration of that

operation (e.g. dull= 2), and its resource requirement (e.g. R' =R1). The arrows represent
I 1 1precedence constraints. For instance, job J, requires 5 operations 0,, 02,..., 05 0' has to be

performed before O, O before 01, etc. The other arcs in the graph represent capacity2 4,

constraints, which require each resource to bc allocated to only one operation at a time. There is
a capacity constraint between each pair of operations that require the same resource. Notice that
R, is the only resource required by four operations (one from each job). Notice also that, in three
out of four jobs (namely j, , h3, and j4), the operation requiring R, is one of the job's longest
operations. Consequently, resource R2 can be expected to be the main bottleneck o' he problem.
We will see that, to some extent, resource R1 constitutes a secondary bottleneck.

I 0' 2R, 0 6 R 0'1
2 3

\\ / /

\ /

\ \ \ ,,

0\ A R

\ /
/ \

\ / \

I O R \

/ \ - - -

/ ' - - -

I

precedence constraint

capacity constraint

Figure 1: A simple job shop problem with 4 jobs. Each node is labeled by the operation

that it represents, its duration, and the resource that it requires.

The earliest acceptable release dates, due dates, and latest acceptable completion dates of the
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jobs are provided in Table I along with the marginal tardiness and inventory costs of these jobs.

Earliest acceptable release dates, due dates, latest acceptable completion dates, and costs

Job j, erd ddl  lcd tard invl inv inv inv' .1Imv11 2  m 3  ln 4  v5

Ji 0 12 20 20 2 1 2 0 0

J2 0 14 20 20 5 0 - - -

i3 0 9 20 5 1 0 0 -

14 0 18 20 10 1 0 -

Table 1: Earliest acceptable release dates, due dates, latest
acceptable completion dates and marginal costs.
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3 A Micro-opportunistic Approach
In MICRO-BOSS, each operation is considered an independent decision point. Any operation
can be scheduled at any time, if deemed appropriate by the system. There is no obligation to

simultaneously schedule other operations upstream or downstream within the same job, nor is
there any obligation to schedule other operations competing for the same resource.

MICRO-BOSS proceeds by iteratively selecting an operation to be scheduled and a reservation

(i.e. start time) to be assigned to that operation. Every time an operation is scheduled, a new
search state is created, where new constraints are added to account for the reservation assigned
to that operation. A so-called consistency enforcing procedure is applied to the new state, that
updates the set of remaining possible reservations of each unscheduled operation. If an
unscheduled operation is found to have no possible reservations left, a deadend state has been
reached: the system- needs to backtrack (i.e. it needs to undo some earlier reservation
assignments in order to be able to complete the schedule). If the search state does not appear to

be a deadend, the system moves on and looks for a new operation to schedule and a reservation

to assign to that operation.

In MICRO-BOSS, search efficiency is maintained at a high level by interleaving search with the

application of consistency enforcing techniques and a set of look-ahead techniques that help
decide which operation to schedule next (so-called operation ordering heuristic) and which
reservation to assign to that operation (so-called reservation ordering heuristic).

1. Consistency Enforcing (or Consistency Checking): Consistency enforcing

techniques prune the search space by inferring new constraints resulting from

earlier reservation assignments [10, 18]. By constantly accounting for earlier

scheduling decisions, these techniques reduce the chance of backtracking.

Simultaneously, by allowing for the early detection of deadend states, these

techniques limit the amount of work wasted in the exploration of fruitless

alternatives.

2. Look-ahead Analysis: A two-step look-ahead procedure is applied in each search

state, which first optimizes reservation assignments within each job, and then, for

each resource, computes contention between jobs over time. Resource/time

intervals where job contention is the highest help identify the critical operation to

be scheduled next (operation ordering heuristic). Reservations for that operation

are then ranked according to their ability to minimize the costs incurred by the

conflicting jobs (reservation ordering heuristic). By constantly redirecting its effort

towards the most serious conflicts, the system is able to build schedules that are

closer to the global optimum. Simultaneously, because the scheduling strategy is

aimed at reducing job contention as fast as possible, chances of backtracking tend
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to subside pretty fast too.

The so-called opportunism in MICRO-BOSS results from the ability of the system to constantly
revise its search strategy and redirect its effort towards the scheduling of the operation that

appears to be the most critical in the current search state. This degree of opportunism differs
from the one displayed by earlier approaches where scheduling entities were large resource/job

subproblems [13], i.e. where large resource/job subproblems had to be scheduled before the

system could revise its scheduling strategy.

Concretely, MICRO-BOSS starts in a search state in which no operation has been scheduled yet.,
and proceeds according to the following steps:

1. If all operations have been scheduled then stop, else go on to 2;

2. Apply the consistency enforcing procedure;

3. If a deadend is detected then backtrack, else go on to step 4;

4. Perform the look-ahead analysis: rank the possible reservations of each

unscheduled operation according to how well they minimize the costs of the job to

which the operation belongs (step 1), and evaluate job contention over time for

each resource (step 2);

5. Select the next operation to be scheduled (so-called operation ordering heuristic);

6. Select a reservation for that operation (so-called reservation ordering heuristic)

7. Create a new search state by adding the new reservation assignment to the current

partial schedule. Go back to 1.

The remainder of this section gives a more detailed description of the look-ahead analysis and

the operation/reservation ordering heuristics. Further details on these techniques as well as other

aspects of MICRO-BOSS can be found in [18].
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3.1 Look-ahead Analysis in MICRO-BOSS

3.1.1 Optimizing Critical Conflicts First
If all jobs could be scheduled optimally (i.e. just-in-time), there would be no scheduling

problem. Generally, this is not the case. Jobs typically have conflicting resource requirements.

The look-ahead analysis carried out by MICRO-BOSS in each search state is meant to allow the

scheduling system to focus its effort on those conflicts that currently appear most critical. A

critical conflict is one that will require an important tradeoff, namely a tradeoff that will

significantly impact the quality of the entire schedule. By first focusing on critical conflicts,

MICRO-BOSS ensures that it has as many options as possible to optimize these conflicts. As
illustrated by a trace provided at the end of this paper, once critical tradeoffs have been worked

out, the remaining unscheduled operations tend to become more decoupled and hence easier to

optimize4. As contention subsides, so does the chance of backtracking. In other words, by

constantly redirecting search towards those tradeoffs that appear most critical, MICRO-BOSS is

expected to produce better schedules and simultaneously reduce its chances of backtracking.

More specifically, a two-step look-ahead procedure is applied to each search state, which first

optimizes reservation assignments within each job, and then, for each resource, computes

contention between jobs over time. The so-called demand profiles produced by these

computations help identify operations whose good reservations (within their jobs) conflict with

the good reservations of other operations. These operations define the critical conflicts on which

MICRO-BOSS works first.

The two-step look-ahead analysis carried out in MICRO-BOSS is further detailed below.

3.1.2 Step 1: Reservation Optimization Within a Job
In order to detect critical conflicts between the resource requirements of unscheduled operations,

MICRO-BOSS keeps track of the best start times that remain available to each unscheduled

operation within its job, and the marginal costs that would be incurred by the job if the operation
was allocated another start time. More specifically, for each remaining possible start time t of

each unscheduled operation O, MICRO-BOSS (implicitly) keeps track of the minimum

additional costs, mincost (tr). that would be incurred by jobjk (the job to which Ok belongs), if Ok

was to start at st<= T rather than at one of its best remaining possible start times. By definition, if

st = - is one of the best start times that remain available to Ok within its job, mincostk('c)=O.

Mincost functions are implicitly updated in each search state in order to account for earlier

scheduling decisions. This is done by:

9 identifying whether the choice of a start time for a given unscheduled operation still

'This generalizes the idea that a bottleneck schedule should be built first in order to drive other scheduling
decisions, such as release decisions.
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affects the tardiness costs of the job to which that operation belongs, and

determining which inventory costs, if any, are still affected by that choice.

Once the apparent marginal tardiness and inventory costs of an unscheduled operation have been
determined in the current search state, the system can identify which start time(s) among the
ones that are still possible will be optimal for that operation (within its job). At that point, the
system can also determine the minimum costs incurred by the job if suboptimal start times are
instead selected. Efficient procedures to keep track of changes in apparent costs as the system
moves from one search state to another are described in [18].

3.1.3 Step 2: Building Demand Profiles to Identify Highly Contended Resource/Time
Intervals

In MICRO-BOSS, critical conflicts are identified as groups of operations whose good start times
(within their jobs) conflict with each other. The importance of a conflict (and the criticality of
the operations participating in that conflict) depends on the number of jobs that are competing
for the same resource, the amount of temporal overlap between the requirements of these jobs.
the number of alternative reservations (i.e. start times) still available to the conflicting operations
and the differences in cost between these alternative reservations (as determined by the mincost
functions computed in step 1).

In order to identify critical conflicts, MICRO-BOSS uses a probabilistic framework, in which
each remaining possible start time t of an unscheduled operation 01 is assigned a subjective

probability a'(t) to be selected for that operation. Possible start times with lower mincost values
are simply assigned a larger probability, thereby reflecting our expectation that they will allow
for the production of better schedules. Using these start time distributions, the system builds, for
each unscheduled operation 0 an individual demand profile D1(t) that indicates the subjective
probability that the operation will be requiring its resource as a function of time (i.e. also a
measure of the reliance of the operation on the availability of its resource as a function of time).
By aggregating the individual demand profiles of all unscheduled operations requiring a given
resource, Rk, the system obtains an aggregate demand profile, Dggr(t), that indicates contention
between (all) unscheduled operations for the resource as a function of time.

Figure 2 represents a(Yr), the start time distribution of operation O. in the problem defined in
Figure 1. This start time distribution is depicted in the initial search state, where all operations
still have to be scheduled. In this search state, start time st = 9 is the best possible start time for
0': it corresponds to a just-in-time schedule of job J2 . Later start times ha- a lower subjective
probability as they would force the job to finish past its due date. Earlier start times are also
suboptimal since they would produce additional inventory. In this example, the marginal
tardiness cost of job i2, tard2 = 20, is five times larger than the marginal inventory cost

2 2
introduced by operation 0, mv =5. Accordingly (1('t) has a steeper slope for T > 9 than for
T < 9. Additional details on how these distributions are constructed can be found in [181.
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Start time distribution T2(T)
0.20

.0

0. 160.

0.12

0.08

0.04

0.00
7 a 9 10 11 12 13 14 15

start time

Figure 2: Start time distribution oY (,) for operation O' in the initial search state
for the problem defined in Figure 1.

Figure 3 displays the individual demand profiles of the four operations requiring resource R,.
These demand profiles represent the subjective probability that each one of these operations uses

resource R2 as a function of time. The aggregate demand for resource R2 is obtained by summing

these four individual demands over time. The individual demands of operations O and O are

quite uniform since these two operations have relatively low apparent marginal costs. In contrast,

operations O. and O, which have larger apparent marginal costs, have individual demands that

are concentrated around their best reservations.

Similar computations can be performed for each of the five resources in the problem. The

resulting aggregate demands (in the initial search state) are displayed in Figure 4. As expected,

resource R2 appears to be the most contended for. The aggregate demand for that resource is well

above 1.0 over a large time interval, with a peak at 1.49. Resource R1 appears to be a potential

bottleneck at the beginning of the problem, with a demand peaking at 1.20. Whether R1 will
actually be an auxiliary bottleneck or not cannot be directly determined from the curves

displayed in Figure 4. Instead the system needs to update these curves in each search state to

account for earlier decisions. It could be the case that, as operations requiring R 2 are scheduled,
the aggregate demand for R 1 becomes smoother. In this example, this is not the case. On the

contrary, after only a portion of the operations requiring resource R 2 have been scheduled,

MICRO-BOSS will redirect its effort to the scheduling of resource R, (see section 4).
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Figure 3: Building R2 's aggregate demand profile in the initial search state.
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3.2 Operation Selection
Critical operations are identified as operations whose good reservations conflict with the good
reservations of other operations. The largest peak in the aggregate demand profiles determines
the next conflict (or micro-bottleneck) to be optimized, and the operation with the largest
reliance on the availability of that peak (i.e. the operation with the largest individual contribution
to the peak) is selected to be scheduled next. Indeed, this operation is the one whose good
reservations are the most likely to become unavailable if other operations contending for the
current micro-bottleneck were scheduled first.

In the example introduced earlier, the most contended demand peak is the one for resource R,
over interval [7,12[. Figure 5 displays the aggregate demand for resource R, together with the
individual demands of the four operations requiring this resource. The operation with the largest
contribution to the demand peak is O. Therefore this operation is selected to be scheduled next.

This is no real surprise: O belongs to one of the two jobs in the problem that have a high
marginal tardiness cost (tard1 = 20). While any delay in starting job J, will cause this job to be
late, job i2 (i.e. the other job with a high marginal tardiness cost) can tolerate a small amount of
delay without ending up late.

3.3 Reservation Selection
Once it has selected an operation, MICRO-BOSS attempts to identify a reservation (for that

operation) that will reduce as much as possible the costs incurred by the job to which that
operation belongs and the other competing jobs. This is equivalent to solving a one-machine
early/tardy problem in which operations scheduled past their best start times incur penalties
determined by their apparent marginal tardiness costs, while operations scheduled before their
best start times incur earliness penalties determined by their apparent marginal inventory costs
(as determined by the mincost functions).

MICRO-BOSS uses a hybrid reservation ordering heuristic that adapts to the amount of

contention for the critical resource/time interval. When contention is particularly high, MICRO-
BOSS successively runs several variations of a one-machine early/tardy procedure developed by
Ow and Morton [15, 18]. The one machine schedule that reduces most the costs of the jobs
competing for the critical resource determines the reservation assigned to the critical operation.
When contention is lower, the system dynamically switches to a greedy reservation ordering
heuristic, in which reservations are simply rated according to their apparent costs (i.e. according
to their mincost values). Indeed, in situations where contention is not too high, a sizable
proportion of the good start times of non critical operations tend to remain available after more

critical operations have been scheduled. When this is the case, a greedy reservation ordering
tends to produce high quality solutions. In particular, it inserts idle time as required by the

operation it is scheduling 5 .

5See [ 181 for further details.
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Figure 5: Operation selection in the initial search state.
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4 A Small Example
The current version of MICRO-BOSS has been implemented in Knowledge Craft, a frame-based
language that runs on top of Common Lisp. The system runs on a DECstation 5000 under Mach
UNIX. The small example used throughout this paper requires a little over 1 second of CPU time

in the current implementation. An edited trace of this example is given in Figure 6.

Observe that, rather than entirely scheduling the main bottleneck resource, namely resource R2,
MICRO-BOSS started to work on resource R1 only after two out of the four operations requiring
R 2 had been scheduled. The average expected demand displayed in each search state is the
average demand for the critical demand peak, and the average contribution is that of the critical
operation for the demand over that peak. The decoupling effect of the operation ordering

heuristic is very clear in this example. In particular, the average demand over the critical peak
consistently decreases from one search state to the next, thereby indicating a regular decrease in

contention as the schedule is constructed (remember that the demand peak corresponds to the
interval of highest contention in the current search state). This observation is correlated by the
average contribution of the critical operation to the demand for the peak in each search state. As
the schedule is constructed, the contribution of the critical operation to the peak becomes a larger
proportion of the total demand for that peak. This indicates that there are fewer and fewer

operations contending with each other. After half of the operations have been scheduled (depth
7), contention has totally disappeared: the critical operation is the only one to contribute to the

demand for the peak. In other words, the problem has been totally decoupled. The resource
requirements of the operations that still need to be scheduled no longer interact with each other.
This phenomenon is not specific to this example, but can be observed in all the problems that we
have run. This suggests that the operation ordering heuristic implemented in MICRO-BOSS is
indeed very effective at redirecting search towards the most serious conflicts.

Notice also that no backtracking was necessary to schedule this problem. The resulting schedule

is displayed in Figure 7.
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MON NOV 12 1990 --- 17:04:49 EST

>> Depth: 0, Number of states visited: 0
Critical demand peak:
R, between 7 and 12, Avg. expected demand: 1.48

Critical Operation: 0,, Avg. contrib.: 0.60
Using early/tardy reservation ordering heuristic:
0, scheduled between 2 and 8 on R,

>> Depth: 1, Number of states visited: 1
Critical demand peak:
R, between 10 and 15, Avg. expected demand: 1.33

Critical Operation: 0, Avg. contrib.: 0.64
Using early/tardy reservation ordering heuristic:

0. scheduled between 9 and 14 on R,

>> Depth: 2, Number of states visited: 2
Critical demand peak:
R I between 0 and 4, Avg. expected demand: 1.35

Critical Operation: 07, Avg. contrib.: 0.75
Using early/tardy reservation ordering heuristic:
0' scheduled between 2 and 9 on R,

>> Depth: 3, Number of states visited: 3
Critical demand peak:
R2 between 14 and 19, Avg. expected demand: 1.13

3
Critical Operation: 03, Avg. contrib.: 0.58

Using early/tardy reservation ordering heuristic:
303 scheduled between 17 and 20 on R 2

>> Depth: 4, Number of states visited: 4
Critical demand peak:
R2 between 14 and 19, Avg. expected demand: 0.60

4

Critical Operation: 02, Avg. contrib.: 0.60
Using greedy reservation ordering heuristic:
0, scheduled between 14 and 17 on R

Figure 6: An edited trace
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>> Depth: 5, Number of states visited: 5
Critical demand peak:
R4 between 10 and 13, Avg. expected demand: 0.57

Critical Operation: 05, Avg. contrib.: 0.34
Using greedy reservation ordering heuristic:
05 scheduled between 10 and 12 on R4

>> Depth: 6, Number of states visited: 6
Critical demand peak:
R 3 between 8 and 10, Avg. expected demand: 1.08

Critical Operation: 04, Avg. contrib.: 1.0
Using greedy reservation ordering heuristic:
0 scheduled between 8 and 10 on R

>> Depth: 7, Number of states visited: 7
Critical demand peak:
R5 between 4 and 7, Avg. expected demand: 0.55

Critical Operation: 01, Avg. contrib.: 0.55
Using greedy reservation ordering heuristic:

0 scheduled between 5 and 8 on R

>> Depth: 8, Number of states visited: 8
Critical demand peak:
R I between 0 and 4, Avg. expected demand: 0.50

Critical Operation: 0,, Avg. contrib.: 0.50
Using greedy reservation ordering heuristic:
01 scheduled between 0 and 2 on R,

>> Depth: 9, Number of states visited: 9
Critical demand peak:
R4 between 5 and 8, Avg. expected demand: 0.44

4

Critical Operation: 0 , Avg. contrib.: 0.44
Using greedy reservation ordering heuristic:

scheduled between 7 and 10 on R 4

Figure 6, continued



>> Depth: 10, Number of states visited: 10
Critical demand peak:
RI between 12 and 16, Avg. expected demand: 0.31

Critical Operation: 02, Avg. contrib.: 0.31
Using greedy reservation ordering heuristic:
0, scheduled between 15 and 17 on R

>> Depth: 11, Number of states visited: 11
Critical demand peak:
R3 between 13 and 15, Avg. expected demand: 0.14

Critical Operation: 0, Avg. contrib.: 0.14
Using greedy reservation ordering heuristic:3

0 scheduled between 14 and 15 on R3

>> Depth: 12, Number of states visited: 12
Schedule Completed

Figure 6, concluded

R 2

W 2 013.

I I I

0 2 4 6 8 10 12 14 16 1 20 time

job 1  job 2

job3  job

Figure 7: The final schedule produced by MICRO-BOSS.
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5 Performance Evaluation
Several experimental comparisons were carried out in order to evaluate the performance of
MICRO-BOSS. These comparisons were performed under a variety of scheduling conditions and

different cost assumptions. They included comparisons against several combinations of popular

priority dispatch rules and release policies, comparisons against a macro-opportunistic scheduler

that could dynamically switch between a job-centered perspective and a resource-centered

perspective, comparisons against coarser variations of MICRO-BOSS, and a comparison against
a variation of MICRO-BOSS using unbiased demand profiles. This section briefly summarizes
some of these experiments. A more comprehensive description of these experiments can be

found in [181.

Problem Sets

Number Due Date Avg. Problem
of Bottlenecks Range Due Date Set

1 loose wide I

1 loose narrow 2

1 tight wide 3

1 tight narrow 4

2 loose wide 5

2 loose narrow 6

2 tight wide 7

2 tight narrow 8

Table 2: Characteristics of the eight problem sets.

Eight sets of scheduling problems were randomly generated to cover a wide variety of

scheduling conditions. Scheduling conditions were varied by adjusting three parameters: an

average due date parameter (tight/loose), a due date range parameter (narrow/wide), and a
parameter controlling the number of major bottlenecks (in this case one or two). A set of 10
scheduling problems was randomly generated for each parameter combination (see Table 2),
resulting in a total of 80 scheduling problems (10 problems x 2 average due date values x 2 due
date ranges x 2 bottleneck configurations).
Each problem involved 20 jobs and 5 resources for a total of 100 operations. Marginal tardiness

costs in the experiments presented in this paper were set to be on the average 5 times larger than
marginal inventory costs in order to model a typical make-to-order production environment 6.

Figure 8 displays the average costs of the schedules produced by MICRO-BOSS and four

priority dispatch rules that have been reported to be particularly good at reducing tardiness under

6Experiments under different cost assumptions are also reported in [18].
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Figure 8: Comparison of the costs of schedules produced by MICRO-BOSS,the WSPT, EDD, S/RPT and WCOVERT dispatch rles.
Each problem set includes 10 problems with 20 jobs and 5 machines.

different scheduling conditions [22]: the Weighted Shortest Processing Time (WSPT) rule, the
Earliest Due Date (EDD) rule, the Slack per Remaining Processing Time (S/RPT) rule, and the
Weighted Cost OVER Time (WCOVERT) parametric rule. In the experiments reported here,
these four dispatch rules were coupled to the Average Queue Time release policy (AQT)
described in [11]. AQT is a parametric release policy that estimates queuing time as a multiple of
the average job duration. The release of a job is determined by offsetting its due date by the sum
of the total job duration and the estimated queuing time. Look-ahead parameters in AQT and
WCOVERT were optimized for each problem set.

Remarkably enough, MICRO-BOSS consistently outperformed all four dispatch rules under all

eight conditions of the study. A more detailed analysis of the results indicates that, while
performing at a level comparable to the dispatch rules with respect to tardiness, MICRO-BOSS
yielded significant reductions in inventory (between 15 and 50 percent depending on the

scheduling situation) [18]. The most important reductions in inventory were observed on the
most difficult problems, namely those with tight average due dates and narrow due date ranges.
Overall, MICRO-BOSS reduced the average schedule cost by 18% compared to its closest
competitor, WCOVERT.
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Figure 9: Comparison of the costs of schedules produced by MICRO-BOSS
and the macro-opportunistic scheduler.

Each problem set includes 10 problems with 20 jobs and 5 machines.

MICRO-BOSS was also compared against a macro-opportunistic scheduler that dynamically
combined both a resource-centered perspective and a job-centered perspective, like in the OPIS
scheduling system [13]. However, while OPIS relies on a set of repair heuristics to recover from
inconsistencies [14], the macro-opportunistic scheduler of this study was built to use the same
consistency enforcing techniques and the same backtracking scheme as MICRO-BOSS 7 . The
macro-opportunistic scheduler also used the same demand profiles as MICRO-BOSS. When
average demand for the most critical resource/time interval was above some threshold level (a
parameter of the system that was empirically adjusted), the macro-opportunistic scheduler
focused on scheduling the operations requiring that resource/time interval, otherwise it used a
job-centered perspective to identify a critical job and schedule some or all the operations in that
job. Each time a resource/time interval or a portion of a job was scheduled, new demand profiles
were computed to decide which scheduling perspective to use next8.

7An alternative would have been to implement a variation of MICRO-BOSS using the same repair heuristics as
OPTS. Besides being quite time-consuming to implement, such a comparison would have been affected by the
quality of the specific repair heuristics currently implemented in the OPTS scheduler.

8Additional details on the implementation of the macro-opportunistic scheduler can be found in [18].
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Figure 9 summarizes the results of the comparison between MICRO-BOSS and the macro-
opportunistic scheduler 9. The macro-opportunistic scheduler was consistently outperformed by
MICRO-BOSS under all eight scheduling conditions. Additional performance measures indicate
that the savings achieved by MICRO-BOSS correspond to reductions in tardiness (Figure 10),
flowtime (i.e. work-in-process) (Figure 11) and in-system time (i.e. total inventory, including
finished-goods inventory)(Figure 12). These results clearly indicate that the additional flexibility
of a micro-opportunistic approach to scheduling generally yields important reductions in

schedule costs.

t 30

- . MACRO-OPPORTUNISTIC
2 S- MICRO-BOSS

A
Zp

10-

5-

20-

0 1 2 3 4 5 6 7 8
Problem Set

Figure 10: Tardiness performance of MICRO-BOSS and the macro-opportunistic
scheduler on eight different problem sets.

On most problems, MICRO-BOSS achieved a search efficiency of 100% (computed as the ratio
of the number of operations to be scheduled over the number of search states that were visited),
and required about 10 minutes of CPU time to schedule each problem (on a DECstation 5000).
Preliminary experiments in C seem to indicate that this time could be reduced to under I minute,
on the same machine.

9VWhile MICRO-BOSS had no problem scheduling any of the 80 scheduling problems, the macro-opportunistic
scheduler could only solve 69 problems out of 80 in less than 1,000 search states. The results presented heme
correspond to these 69 experiments.
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Figure 11: Flowtimne performance of MICRO-BOSS and
the macro-opportunistic scheduler on eight different

problem sets.

70 /

40-

30-

20 _ _ _ _ __ _ _ _

-4MACRO-OPPORTUNISTIC
10 *- MICRO-BOSS

0-
0 1 2 3 4 5 6 7 8

Problem Set

Figure 12: In-system time performance of MICRO-BOSS and
the macro-opportunistic scheduler on eight different

problem sets.
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6 Conclusions
In this paper, a micro-opportunistic approach to factory scheduling was described that closely

monitors the evolution of bottlenecks during the construction of the schedule, and continuously

redirects search towards the operation that appears to be most critical. This approach differs from

earlier opportunistic approaches, as it does not require scheduling large resource subproblems or

large job subproblems before revising the current scheduling strategy. This micro-opportunistic

approach has been implemented in the context of the MICRO-BOSS factory scheduling system

[18]. An experimental study indicates that the flexibility of this approach has enabled MICRO-

BOSS to outpcrf_.m combinations of popular priority dispatch rules and release policies

described in the Operations Research literature as well coarser opportunistic scheduling

approaches proposed in the Artificial Intelligence literature.
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